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1. Introduction  

Lower leg injury is a major injury mode induced by underbody blast loading associated with 
improvised explosive device (IED) attacks against ground fighting vehicles.1–4 It is also widely 
believed that blast-mitigating floor mats are effective means for reducing the severity of lower 
leg injury.5–7 Until now, it has been necessary to conduct the loading test with the 
anthropomorphic test device (ATD) lower leg for evaluations at the US Army Research 
Laboratory (ARL). However, the loading test with the ATD lower leg is expensive and time 
consuming; simplified methodology is in immediate need.  

 Under the auspices of the Underbody Blast Mitigation (UBM) program, we will develop the 
simplified methodology for the evaluation of floor-mat effectiveness. In this study, we developed 
the Compression Test Rig (CTR) that is capable of evaluating the mat’s effectiveness against 
assessed lower leg injury. Firstly, we designed the CTR that represented the loading status under 
the ATD lower leg. Secondly, we conducted loading test of the nominal floor mat with the ATD 
lower leg and CTR. Then, we compared the responses to establish transfer relation between these 
2 test configurations and investigated the applicability of the CTR in the floor-mat evaluation 
instead of the ATD lower leg. 

2. Material and Methods 

2.1 Design of the CTR 

The CTR was designed as simple as possible to increase its availability to various stakeholders 
for the evaluation of the floor mat. The concept drawing of the CTR is shown in Fig. 1. In the 
testing, the CTR is fixed on the loading table of the drop tester, and the floor mat is compressed 
by the inertia of the indenter and crosshead; this produces an input and output relationship from 
the acceleration of the table and crosshead. In the evaluation, the crosshead acceleration is 
converted based on the transfer relation (Fig. 2) to the corresponding ATD lower-leg tibia load, 
which is a major criterion for the lower leg injury. 
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Fig. 1 Conceptual drawing of the CTR 

 

Fig. 2 Schematic of the response conversion between the CTR response and ATD lower-leg response 

To simplify the transfer relation, it is necessary to generate the same material behavior in the 
floor mat between the CTR loading and ATD lower-leg loading. Therefore, we conducted the 
preliminary Finite Element Analysis (FEA) to clarify the loading status using the FE model of 
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the ATD lower-leg loading, as seen in Fig. 3. The FE-material models used in the floor-mat and 
floor-plate parts are listed in Table 1. 

 

Fig. 3 FEA model for the ATD lower-leg loading 

Table 1 FE material models for the floor-mat and floor-plate parts 

 
 

The pressure distribution under the boot sole was clarified (Fig. 4). There are high-pressure areas 
under the toe and heel. The load histories of a representative FEA result are shown in Fig. 5. 
Then, the tendency of loading by the boot heel and lower tibia is similar, although the boot toe 
shows different tendency. Therefore, it is convenient to generate similar loading status in the 
CTR loading as the boot-heel loading for the development of a simple transfer relation. 
Considering this, the cross-section of the CTR was determined to approximate the area of the 
boot heel. Moreover, the moving mass—indenter and crosshead—of the CTR was arranged 
temporarily as 4.8 kg (hereafter the fixed-mass CTR).  
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Fig. 4 Typical pressure distribution under the boot sole in the FEA result 

 

Fig. 5 Load histories of the ATD lower leg in 10-meter-per-second (m/s), 
10-millisecond (msec) pulse loading FEA 

To confirm the loading status under this CTR indenter, FEAs were conducted in various loading 
conditions using the FE model, as illustrated in Fig. 6. The FE-material models used in this FE 
model were identical to those of the ATD lower-leg loading (Table 1). 
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Fig. 6 FEA model for the CTR loading 

The FEA results are shown in Figs. 7–9 with those of the ATD lower-leg loading. The loads 
applied by the CTR indenter differ from those applied by the boot heel.  

 

Fig. 7 Load histories of the ATD lower leg and CTR 
(4.8 kg) in 10-m/s, 2.5-msec-pulse loading FEA 
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Fig. 8 Load histories of the ATD lower leg and CTR 
(4.8 kg) in 10-m/s, 5.0-msec-pulse loading FEA 

 

Fig. 9 Load histories of the ATD lower leg and CTR 
(4.8 kg) in 10-m/s, 10-msec-pulse loading FEA 

To clarify this tendency, the peak loads and applied impulses are shown in Figs. 10 and 11. The 
fixed-mass CTR clearly shows a different loading tendency from the ATD lower leg, especially 
in the peak loads; thus we conclude that it is impossible to simulate the same loading condition 
as the boot heel with the fixed-mass CTR. 
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Fig. 10 Relation between the peak load and pulse duration 

 

Fig. 11 Relation between the applied impulse and pulse duration 

Additional analyses were conducted with CTRs that had various masses to determine the 
adequate mass for each loading pulse—hereafter, the variable-mass CTR—as shown in Figs. 12–
14. (The FEA results are also summarized in Figs. 10 and 11.) Thus, there is agreement between 
the boot-heel loading and variable-mass CTR loading. 
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Fig. 12 Load histories of the ATD lower leg and CTR 
(1.3 kg) in 10-m/s, 2.5-msec-pulse loading FEA 

 

Fig. 13 Load histories of the ATD lower leg and CTR 
(3.7 kg) in 10-m/s, 5-msec-pulse loading FEA 
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Fig. 14 Load histories of the ATD lower leg and CTR 
(6.6 kg) in 10-m/s, 10-msec-pulse loading FEA 

In this study we focused on the 5-msec-pulse loading, which is one of the most frequent loading 
conditions in the evaluation of underbody blast loading. Therefore, the specifications of the CTR 
were determined (Table 2) by considering the relation between the CTR mass and response. 
According to these specifications, the CTR was fabricated as shown in Fig. 15.  
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Fig. 15 Drawings of the CTR prototype 

2.2 Loading Test of the CTR and ATD Lower Leg 

To develop the transfer relation between the CTR and ATD lower leg, the loading test with 
conditions in Table 3 were conducted in both test configurations. The responses of the CTR and 
ATD lower leg were measured in the crosshead acceleration and lower-tibia load, respectively. 
Moreover, SKYDEX material was used as the nominal floor mat in this loading test.  
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Table 3 Loading conditions for the CTR loading and ATD lower-leg loading 

 

The loading test was conducted on the drop testers (Lansmont, P65 and P45) at the Adelphi 
Laboratory Center, ARL. The arrangements of sensors in both test setups are shown in Figs. 16 
and 17, and the specifications are listed in Table 4. The signals from sensors were recorded in the 
data-acquisition system (Spectral Dynamics, SYSCHASVXI-5) at the sampling frequency of  
250 kHz. Moreover, direct-current offset and the filters (Table 4) were applied to each signal in 
post-processing with the data-analysis software (MathWorks, MATLAB). The test was also 
recorded by the high-speed imaging camera (Phantom, Miro) for the confirmation of the test 
rig’s behavior.  
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Fig. 16 Arrangements of sensors in the test setup for the CTR loading 

 

Fig. 17 Arrangements of sensors in the test setup for the ATD lower-leg loading 
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Table 4 Specifications of sensors used in the CTR loading and ATD lower-leg loading 

 
 

3. Results and Discussion  

3.1 Experimental Results 

The typical responses of the CTR and ATD lower leg are shown in Figs. 18 and 19. The velocity 
change of each loading condition is summarized in Table 5. The responses show different delays 
in the peak value against the input pulses. Both responses have longer-duration pulses than their 
input-acceleration pulses, and the ATD lower leg shows longer-duration responses than the CTR. 
Moreover, there are plateau regions (second peaks) on the loading phase of the ATD lower-leg 
response, although the corresponding clues are not clear in the CTR response. These plateau 
regions were possibly generated as the results of the shock mitigation in the ATD foot flesh and 
boot sole and the floor mat. 

 

Fig. 18 Typical input- and output-acceleration 
histories in the CTR loading, CTR_03 
(Height = 30 inches) 
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Fig. 19 Typical input-acceleration history and ATD 
lower-tibia load history in the ATD lower-leg 
loading, ATD_03 (Height = 30 inches) 

Table 5 Average velocity changes in each loading condition 

 

3.2 Development of Transfer Relation 

The concept of the transfer relation developed in this study is shown in Fig. 20.8 In this concept, 
the transfer relations were developed in the acceleration–force (amplitude–domain) transfer and 
time–time (duration–domain) transfer independently. To develop these transfer relations, it was 
necessary to compare the responses of the CTR and ATD lower leg in the amplitude domain and 
duration domain at each loading condition.  
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Fig. 20 Schematic of the transfer relation between the CTR response and ATD lower-leg response 

In the amplitude–domain comparison, the responses of the CTR and ATD lower leg were 
synchronized by setting their peaks to the time zero as shown in Figs. 21 and 22. Then, the 
responses of both test configurations were related in the amplitude domain as shown in Fig. 23.  

 

Fig. 21 Synchronized crosshead-acceleration histories 
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Fig. 22 Synchronized lower-tibia load histories 
in the ATD lower-leg loading 

 

Fig. 23 Relation between the ATD lower-tibia load 
and CTR crosshead acceleration in each loading condition 

There are 2 regions in the amplitude–domain transfer relation: nonlinear and linear (Fig. 24). 
Moreover, there is a rate effect in the slopes of the nonlinear region, whereas the slopes in the 
linear region are almost the same among test conditions and smaller than those of the nonlinear 
region. The smaller slopes in the linear regions are probably due to the plateau regions in the 
ATD lower-leg responses (shown in Fig. 22). The boundary between the nonlinear region and 
linear region was defined as the inflection point of the bilinear curve in the nonlinear region. 
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Fig. 24 Schematic of the amplitude–domain transfer relation between 
the CTR response and ATD lower-leg response 

Considering the above, the amplitude–domain transfer relation was formularized. In the 
nonlinear region, the ATD lower-tibia load FLEG is calculated as follows: 

 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴 ∙ 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶2 + 𝐵𝐵 ∙ 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶 ,  (1) 

where aCTR is the acceleration of the CTR crosshead, and A and B are the rate-dependent 
parameters in a loading condition. In the linear region, FLEG is calculated as follows: 

 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐶𝐶 ∙ 𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐹𝐹𝐼𝐼𝐼𝐼  , (2) 

where FIP is equal to FLEG calculated in Eq.1 at the inflection point of the bilinear curve, and C is 
the averaged slope in the linear region among loading conditions. The Parameters A, B, and C 
were calculated for each loading condition (Table 6). Moreover, in the application of this transfer 
relation to other loading conditions, the parameters were calculated as the bilinear interpolation 
of the values in Table 6 according to the velocity change ∆V.  

Table 6 Parameters for Eqs. 1 and 2 in each loading condition 
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Similar procedures were applied in the duration–domain comparison. Firstly, the responses of the 
CTR and ATD lower leg were normalized by their peak values. Secondly, as shown in Figs. 25 
and 26, the relation between the duration and normalized response were analyzed according to 
the SAE J1727 injury-calculations guideline for decomposing the time domain signal into the 
duration domain signal.  

 

Fig. 25 Relation between the duration and normalized 
response of the CTR loading 

 

Fig. 26 Relation between the duration and normalized 
response in the ATD lower-leg loading 

The responses of both test configurations were related in the duration domain as shown in 
Fig. 27. In this study, we focused on the 5-msec-pulse loading. Therefore, the maximum pulse 
duration is at most 8 msec in the CTR response, and we focus on the linear part of the duration–
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domain transfer relation (Fig. 28). Thus, the ATD lower-tibia time duration TATD is calculated as 
follows: 

 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐷𝐷 ∙ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 , (3) 

where TCTR is the CTR time duration. The parameter D was calculated as listed in Table 7 for 
each loading condition.  In the application of this transfer relation to other loading conditions, the 
parameter was calculated as the linear interpolation of the value in Table 7 according to the ∆V.  

The ATD lower-leg response is predicted from the CTR response combining the amplitude–
domain transfer and duration–domain transfer; a CFC600 filter is applied to ensure consistency 
with the appropriate lower-leg filter class from the CTR response.10 

 

Fig. 27 Relation of the pulse duration between the 
ATD lower-tibia response and CTR crosshead 
response in each loading condition 
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Fig. 28 Schematic of the duration–domain transfer relation between 
the CTR response and ATD lower-leg response 

Table 7 Parameters for Eq. 3 in each loading condition 

 

3.2 Prediction of ATD Lower-Leg Response Based on the CTR Response 

To confirm the validity, the transfer relation was applied to the CTR responses of 2 SKYDEX 
tests, which were not used in the development of the transfer relation. The predicted ATD 
responses are shown in Figs. 29 and 30 with the experimental ATD responses. To confirm the 
validity against other floor-mat material, the transfer relation was applied to the butyl-rubber 
floor mat using the FE model of the CTR and ATD lower leg. The FE-material model used for 
the butyl rubber in these FE models is listed in Table 8.9  
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Fig. 29 Comparison between the ATD lower-leg 
experimental response and predictive response 
from the CTR response, CTR_02/ATD_02 (∆V = 4.86 m/s) 

 

Fig. 30 Comparison between the ATD lower-leg 
experimental response and predictive response 
from the CTR response, CTR_04/ATD_04 
(∆V = 6.26 m/s) 
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Table 8 FE-material models for the butyl rubber 

 
 
The predicted ATD response from the CTR response in the FEA is shown in Fig. 31 with the 
ATD response in the FEA. The prediction errors of these comparisons are listed in Table 9.  

The predicted ATD responses agree with those of the experiments including the plateau regions 
(second peaks), whereas the clues are not clear in the CTR responses. Especially, the peak loads 
are well predicted. However, the prediction overestimates the ATD lower-leg response in the 
large ∆V loading. The treatment of the high acceleration in the CTR response needs to be 
revisited to increase the accuracy of the transfer relation. 

In the application to the butyl-rubber floor mat, the prediction in the amplitude domain shows 
small errors. However, the prediction in the duration domain shows shorter duration response 
than the FEA result of the ATD lower leg. Thus, the impulses are underestimated. This may be 
because of the low reliability of the FE-material model in the unloading phase. Therefore, the 
experimental confirmation against other available material is anticipated. 

 

Fig. 31 Example of the application of the transfer relation 
to the butyl-rubber floor mat in the FEA, 
CTR_03/ATD_03 (∆V = 5.26 m/s) 
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Table 9 Errors in the ATD lower-leg response prediction from the CTR response 

 
 

4. Conclusions  

In this study we developed the CTR to replace the ATD lower leg in the evaluation of the floor 
mat against underbody blast loading. Through the FEA, the CTR was designed to simulate the 
floor-mat loading status under the ATD lower leg during the loading event. Then, the transfer 
relation between the CTR response and ATD lower-leg response was clarified through the drop 
test with various loading conditions. Moreover, the validity and applicability of the transfer 
relation were confirmed with the experimental results of SKYDEX loading and FEA results of 
the butyl-rubber loading. 

Through these processes, the CTR prototype was developed with the transfer relation for the 
prediction of ATD lower-leg response. For the improvement of the CTR, further loading tests 
with large ∆V and other floor mats are recommended.  
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List of Symbols, Abbreviations, and Acronyms 

ARL  US Army Research Laboratory 

ATD  anthropomorphic test device 

CSBES Crew Survivability Blast Effects Simulator 

CTR  Compression Test Rig 

FE  finite element 

FEA  Finite Element Analysis 

IED  improvised explosive device 

kN  kilonewton 

LSTC  Livermore Software Technology Corporation 

mm  millimeter  

msec  millisecond 

m/s  meters per second  

 

 
  



 

26 

 

 1 DEFENSE TECH INFO CTR 
 (PDF) ATTN  DTIC OCA 
 
 2 US ARMY RSRCH LABORATORY 
 (PDF) ATTN  IMAL HRA MAIL & RECORDS MGMT 
  ATTN  RDRL CIO LL TECHL LIB 
 
 1 US ARMY RSRCH LAB 
 (PDF) ATTN  RDRL WMP F R KARGUS 
 


	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Material and Methods
	2.1 Design of the CTR
	2.2 Loading Test of the CTR and ATD Lower Leg

	3. Results and Discussion
	3.1 Experimental Results
	3.2 Development of Transfer Relation
	3.2 Prediction of ATD Lower-Leg Response Based on the CTR Response

	4. Conclusions
	5. References
	List of Symbols, Abbreviations, and Acronyms

